AP® CALCULUS AB 2015 SCORING GUIDELINES

Question 6

Consider the curve given by the equation $y^3 - xy = 2$. It can be shown that $\frac{dy}{dx} = \frac{y}{3y^2 - x}$.

- (a) Write an equation for the line tangent to the curve at the point (-1, 1).
- (b) Find the coordinates of all points on the curve at which the line tangent to the curve at that point is vertical.
- (c) Evaluate $\frac{d^2y}{dx^2}$ at the point on the curve where x = -1 and y = 1.

2005 #5 Form B

Consider the curve given by $y^2 = 2 + xy$

a. Show that $\frac{dy}{dx} = \frac{y}{2y - x}$.

b. Find all points (x, y) on the curve where the line tangent to the curve has slope $\frac{1}{2}$.

c. Show that there are no points (x, y) on the curve where the line tangent to the curve is horizontal.

2000 #5

Consider the curve given by $xy^2 - x^3y = 6$.

a. Show that $\frac{dy}{dx} = \frac{3x^2y - y^2}{2xy - x^3}$.

b. Find all points on the curve whose x-coordinate is 1, and write an equation for the tangent line at each of these points.

c. Find the x-coordinate of each point on the curve where the tangent line is vertical.

2001 #6

The function f is differentiable for all real numbers. The point $(3, \frac{1}{4})$ is on the graph of y = f(x), and the slope at each point (x, y) on the graph is given by $\frac{dy}{dx} = y^2(6-2x)$.

a. Find $\frac{d^2y}{dx^2}$ and evaluate it at the point (3, $\frac{1}{4}$).

The slope of the tangent is -1 at the point (0,1) on $x^3 - 6xy - ky^3 = a$, where k and a are constants. The values of the constants a and k are:

A.
$$k = 1$$
, $a = -1$ B. $k = 2$, $a = -2$ C. $k = 3$, $a = -3$ D. $k = -2$, $a = 4$. E. $k = -1$, $a = 3$

B.
$$k = 2$$
, $a = -2$

C.
$$k = 3$$
, $a = -3$

D.
$$k = -2$$
, $a = 4$

1998#6

Consider the curve defined by $2y^3 + 6x^2y - 12x^2 + 6y = 1$

a. Show that $\frac{dy}{dx} = \frac{4x - 2xy}{x^2 + y^2 + 1}.$

b. Write an equation of each horizontal tangent line to the curve.

c. The line through the origin with slope -1 is tangent to the curve at point P . Find the x- and y-coordinates of point P.

1992 AB 4:

Consider the curve defined by the equation $y + \cos y = x + 1$ for $0 \le x \le 2\pi$

- (a) Find $\frac{dy}{dx}$ in terms of y.
- (b) Write an equation for each vertical tangent to the curve.
- (c) Find $\frac{d^2y}{dx^2}$ in terms of y.

Find the implicit derivative:

$$1. \ x^2 - xy - y^3 = xy^2$$

$$2. \ \sqrt{x} + \sqrt{y} = 25$$

3.
$$\cos^2 y + \sin^2 y = y + 2$$

$$4. \sin(xy) = 2x + 5$$

Write the equation of the tangent line to the following curves at the indicated point.

5.
$$xy^2 = 1$$
 at $(1,-1)$

6.
$$\frac{x^2}{xy-4} = y^2$$
 at (4,2)

Find the second derivative y'' or $\frac{d^2y}{dx^2}$

7.
$$y^2 + 2y = 2x + 1$$

$$8.\ 2xy = y^2$$

- 9. A particle moves according to a law of motion $s = t^3 6t^2 + 9t + 11$.
 - a. What is the velocity of the particle at t=0.
 - b. During what intervals is the particle moving left?
 - c. What is the total distance travelled by the particle from t=0 to t=2.
 - d. Determine the displacement of the particle from t=0 to t=2.
- 10. A dynamite blast blows a heavy rock straight up with a launch velocity of 160 ft/sec. It reaches a height of $s = 160t 16t^2$ How high does the rock go? How fast is the rock going when it is 256 ft above the ground?

	¥			