Optimization Problems

Steps in solving problems:

- 1. Understand the problem. What is the unknown? What's given?
- 2. Draw a diagram.
- 3. Introduce notation. Assign symbols to the quantity to be max or min. Label all other givens.
- 4. Express unknown in terms of givens.
- 5. If unknown is expressed as a function of more than one variable, use given info to find relationship among the variables. Then use these equations to eliminate all but one of the variables.
- 6. Find absolute max or min value. In particular, if the domain of f is closed used the closed interval method.

Example One:

A farmer has 2400 feet of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?

Example Two:

A cylindrical can is to be made to hold I liter of oil. Find the dimensions to minimize the cost of the metal to manufacture the can. (Minimize surface area)

Example Three:

Which points on the graph of $y = 4 - x^2$ are closest to (0,2)?

Example Four:

A man launches his boat from point A on a bank of a straight river, 3 km wide, and wants to reach point B 8 km downstream on opposite bank as quickly as possible. (Assume speed of water is neglibile compared to speed of rowing) He rows at 6 km/hr and he runs at 8 km/hr.

Example Five:

Find the area of the largest rectangle that can be inscribed in a semicircle of radius r. (There's an alternate solution to this involving trig.)