NAME:			

I: Use the graph of f(x) on the left to answer the following questions.

1.
$$f(0) =$$
 4. $f(2) =$

2.
$$f(-2) =$$

2.
$$f(-2) =$$
 5. $f(-1) =$

3.
$$f(3) =$$

12. What "test" can be used to determine that f(x) is in fact a function?

Describe what is happening during each time interval:

17. What is a probable scenario for this particular elevator ride? Be specific.

18. Draw a function that satisfies ALL of the following requirements:

a.
$$f(-4) = 5$$

b.
$$f(-2) = 3$$

c.
$$f(-1) = -4$$

d.
$$f(1) = -6$$

e.
$$f(5) = 0$$

f. f(3) does not exist

g. The domain of the function is $(-\infty,3)\bigcup(3,\infty)$

h. The range of the function is $(-\infty, 5]$

III: Sketch each function. State the domain, range, and intercepts (if any).

19.
$$f(x) = x^2$$

20.
$$f(x) = x^3$$

Domain: _____

Range:

Intercepts: _____

Domain: _____

Range: _____

Intercepts:

21.
$$f(x) = \sqrt{x}$$

22.
$$f(x) = \sqrt[3]{x}$$

Domain: _____

Range: _____

Intercepts: _____

Domain: _____

Range: _____

Intercepts: _____

23.
$$f(x) = \ln x$$

24.
$$f(x) = e^x$$

Domain: _____

Range:

Intercepts: _____

Domain: _____

Range: _____

Intercepts: _____

IV: Use the graph on the right to answer the following questions. Assume that each increment on the Cartesian graph represents one unit in length.

25.
$$(f \circ g)(2) = \underline{\hspace{1cm}}$$

26.
$$g[g(5)] =$$

27.
$$(f+g)(-3) =$$

29. For what x -values does f(x) = g(x)?

30. What is the domain of (f+g)(x)?

31. What is the range of f(x)?

32. For what values of x is it true that g(x) > f(x)?

V: Use the table below to find each value.

х	0	1	2	3	4	5
f(x)	2	3	5	1	0	4
g(x)	5	2	3	4	1	0

33.
$$(f \circ g)(2) = \underline{\hspace{1cm}}$$

34.
$$(g \circ g)(4) = \underline{\hspace{1cm}}$$

VI: Use the graph on the right of $f^{-1}(x)$ to answer the following questions. Assume that each increment on the Cartesian graph represents one unit in length.

35.
$$f^{-1}(-5) =$$

36.
$$f(4) =$$

37.
$$f^{-1}[f^{-1}(0)] =$$

39. What is the domain of $f^{-1}(x)$?

40. What is the domain of f(x)?