3.3 Worksheet Day 1

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

- 1. A derivative tells you the ______ of a function.
- 2. What is the power rule for derivatives? (i.e. how do you take the derivative of $y = x^n$?)
- 3. For each of the following functions, find $\frac{dy}{dx}$.

a)
$$y = -2x^3 + x$$

b)
$$y = \frac{x^4}{3} - \frac{x^2}{7} + 5$$

c)
$$y = \frac{5}{x^2} + \frac{6}{x} - 8x^3$$

d)
$$y = \frac{x^{-3}}{2} + 5x^{-4} - 3x^{-6}$$

e)
$$y = 5x^4 + 2x^3 - 8x^2 - 7x + 11$$
 f) $y = 7x - 8$

f)
$$y = 7x - 8$$

g)
$$y = (x^2 - 3)(x + 4)$$

h)
$$y = \frac{x^5 - 2x^4 + 3x^3}{x^5}$$

i)
$$y = \sqrt{x} + \frac{3}{\sqrt{x}} - 6x^{\frac{2}{3}} + \frac{7}{x^3}$$

- 4. [Calculator Required] We want to find all points where the graph of $y = x^4 5x^3 3x^2 + 13x + 10$ has a horizontal tangent line.
 - a) First, find an equation for y':
 - b) A horizontal tangent line will have a slope = ______, and use your calculator to solve this equation.

- 5. Find the equation of the tangent line to the function $y = \frac{x^2 + x 2}{2x}$ at the point where x = 1.
- 6. Find the equation of the normal line to the function $y = x^3 5$ x + 1 at the point when x = 2.
- 7. Find the points on the curve $y = x^3 + 3x^2 9x + 7$ where the tangent line is parallel to the x-axis.

- 8. Consider the curve $y = x^3 + x$.
 - a) Find the tangents to the curve at all the points where the slope is 4. (be careful! ... it doesn't say x = 4!)
 - b) What is the smallest slope of the curve? At what value of x does the curve have this value?
- 9. Find the x- and y-intercepts of the line that is tangent to the curve $y = x^3$ at the point (-2, -8).

- 10. If the line normal to the graph of f at the point (1, 2) passes through the point (-1, 1), then which of the following gives the value of f'(1)?
 - -2 Α
 - В
 - C -1/2
 - D 1/2

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

- 1. What is the product rule?
- 2. What is the quotient rule?

3. Let
$$f(x) = (3x^3 + 4x^2)(2x^4 - 5x)$$
.

- a) Find f'(x) without using the product rule
- b) Find f'(x) using the product rule.

4. Let
$$f(x) = \frac{x^2 + 4}{x}$$

- a) Find f'(x) without using the quotient rule
- b) Find f'(x) using the quotient rule.

5. Find $\frac{dy}{dx}$ for each of the following functions.

a)
$$y = \frac{2x-5}{3x+2}$$

b)
$$y = (3-x)(2+x^2)^{-1}$$

c)
$$y = \frac{x^3}{8 - x^2}$$

6. For a-d, write a expression for f'(x) and then use it to find f'(2) given the following information:

$$g(2) = 3$$
 $g'(2) = -2$
 $h(2) = -1$ $h'(2) = 4$

a)
$$f(x) = 2g(x) + h(x)$$

b)
$$f(x) = 4 - h(x)$$

c)
$$f(x) = g(x)h(x)$$

d)
$$f(x) = \frac{g(x)}{h(x)}$$

7. Suppose u and v are differentiable functions of x = 3 and that u(3) = 4, $\frac{du}{dx}\Big|_{x=3} = -3$, v(3) = 2, and $\frac{dv}{dx}\Big|_{x=3} = 3$. Find the values of the following derivatives at x = 3.

a)
$$\frac{d}{dx} \left(\frac{u}{v} \right)$$

b)
$$\frac{d}{dx}(uv)$$

c)
$$\frac{d}{dx}(5u-2v+4uv)$$

d)
$$\frac{d}{dx} \left(\frac{v}{u} \right)$$

8. Solve for a and b in order for f(x) to be both continuous and differentiable at x = 1. (be sure to use the definition of continuity)

$$f(x) = \begin{cases} x^2 + 2 & ; x \le 1 \\ a\left(x - \frac{1}{x}\right) + b & ; x > 1 \end{cases}$$

- 9. For each of the following, find the equation of the tangent line to the given function at the indicated point.
 - a) $f(x) = (x^3 3x + 1)(x + 2)$ at the point (1, -3).
- b) $y = \frac{8}{4 + x^2}$ at the point (-2, 1).

- 10. At what point on the graph of $y = \frac{1}{2}x^2$ is the tangent line parallel to the line 2x 4y = 3?
 - $\left(\frac{1}{2},\frac{1}{2}\right)$ A)
 - $\left(\frac{1}{2},\frac{1}{8}\right)$ B)
 - $(1,-\frac{1}{4})$ C)
 - D)
 - (2,2)E)
- 11. Let f be a differentiable function such that f(3) = 2 and f'(3) = 5. If the tangent line to the graph of f at x = 3 is used to find an approximation to a zero of f, that approximation is
 - A) 0.4
 - B) 0.5
 - C) 2.6
 - D) 3.4
 - E) 5.5
- 12. An equation of the line tangent to the graph of $y = \frac{2x+3}{3x-2}$ at the point (1, 5) is
 - 13x y = 8A)
 - 13x + y = 18
 - C) x - 13y = 64
 - D) x + 13y = 66
 - -2x + 3y = 13

- 13. What is the instantaneous rate of change at x = 2 of the function f given by $f(x) = \frac{x^2 2}{x 1}$?
 - A) –2
 - B) $\frac{1}{6}$
 - C) $\frac{1}{2}$
 - D) 2
 - E) 6
- 14. If u, v, and w are nonzero differentiable functions of x, then the $\frac{d}{dx} \left(\frac{uv}{w} \right)$ is
 - A) $\frac{uv'+u'v}{w'}$
 - B) $\frac{u'v'w-uvw'}{w^2}$
 - C) $\frac{uvw'-uv'w-u'vw}{w^2}$
 - D) $\frac{u'vw + uv'w + uvw'}{w^2}$
 - E) $\frac{uv'w + u'vw uvw'}{w^2}$
- 15. When an object is thrown off a 100 foot cliff with an initial velocity of 40 feet/second, the height h, in feet, of the object can be modeled as a function of time t, in seconds, using the function

$$h(t) = -16t^2 + 45t + 100$$
.

- a) Find $\frac{dh}{dt}$... What is the unit of measurement for this equation?
- b) Find $\frac{d^2h}{dt^2}$... What is the unit of measurement for this equation?
- 16. Let $g(x) = x \frac{1}{x}$. Find the following:
 - a) g'(x)

b) g''(x)

c) The tangent line equation when x = 2