Section 7.3 Exercises

406

In Exercises 1 and 2, find a formula for the area A(x) of the cross sections of the solid that are perpendicular to the x-axis.

- 1. The solid lies between planes perpendicular to the x-axis at x = -1 and x = 1. The cross sections perpendicular to the x-axis between these planes run from the semicircle $y = -\sqrt{1 x^2}$ to the semicircle $y = \sqrt{1 x^2}$.
 - (a) The cross sections are circular disks with diameters in the xy-plane.

(b) The cross sections are squares with bases in the xy-plane.

(c) The cross sections are squares with diagonals in the xy-plane. (The length of a square's diagonal is $\sqrt{2}$ times the length of its sides.)

(d) The cross sections are equilateral triangles with bases in the xy-plane.

- 2. The solid lies between planes perpendicular to the x-axis at x = 0 and x = 4. The cross sections perpendicular to the x-axis between these planes run from $y = -\sqrt{x}$ to $y = \sqrt{x}$.
 - (a) The cross sections are circular disks with diameters in the xy-plane.

(b) The cross sections are squares with bases in the xy-plane.

- (c) The cross sections are squares with diagonals in the xy-plane.
- (d) The cross sections are equilateral triangles with bases in the *xy*-plane.

In Exercises 3-6, find the volume of the solid analytically.

- 3. The solid lies between planes perpendicular to the x-axis at x = 0 and x = 4. The cross sections perpendicular to the axis on the interval $0 \le x \le 4$ are squares whose diagonals run from $y = -\sqrt{x}$ to $y = \sqrt{x}$.
- 4. The solid lies between planes perpendicular to the x-axis at x = -1 and x = 1. The cross sections perpendicular to the x-axis are circular disks whose diameters run from the parabola $y = x^2$ to the parabola $y = 2 x^2$.

5. The solid lies between planes perpendicular to the x-axis at x = -1 and x = 1. The cross sections perpendicular to the x-axis between these planes are squares whose bases run from the semicircle $y = -\sqrt{1 - x^2}$ to the semicircle $y = \sqrt{1 - x^2}$

In Exercises 39-42, find the volume of the solid analytically.

- 39. The base of a solid is the region between the curve $y = 2\sqrt{\sin x}$ and the interval $[0, \pi]$ on the x-axis. The cross sections perpendicular to the x-axis are
 - (a) equilateral triangles with bases running from the x-axis to the curve as shown in the figure.

- (b) squares with bases running from the x-axis to the curve.
- **40.** The solid lies between planes perpendicular to the x-axis at $x = -\pi/3$ and $x = \pi/3$. The cross sections perpendicular to the x-axis are
 - (a) circular disks with diameters running from the curve $y = \tan x$ to the curve $y = \sec x$.
 - (b) squares whose bases run from the curve $y = \tan x$ to the curve $y = \sec x$.
- 41. The solid lies between planes perpendicular to the y-axis at y = 0 and y = 2. The cross sections perpendicular to the y-axis are circular disks with diameters running from the y-axis to the parabola $\alpha = \sqrt{5}y^2$.
- 42. The base of the solid is the disk $x^2 + y^2 \le 1$. The cross sections by planes perpendicular to the y-axis between y = -1 and y = 1 are isosceles right triangles with one leg in the disk.

