10.4 Modeling Planar Motion-Apps of Vectors

Definitions: Velocity, Speed, Acceleration & Direction of Motion

Suppose a particle moves along a smooth curve in the plane so that its position at any time t is s(t) = (x(t), y(t)).

- 1. Position Vector: $r(t) = \langle x(t), y(t) \rangle$
- 2. Velocity Vector: $v(t) = \langle \frac{dx}{dt}, \frac{dy}{dt} \rangle$
- 3. Speed-the magnitude of v(|v|): $\sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2}$ (must have a point-this is a number)
- 4. Acceleration Vector: $a(t) = \langle \frac{d^2x}{dt^2}, \frac{d^2y}{dt^2} \rangle$
- 5. Direction of Motion is the direction vector: $\frac{v}{|v|}$

Definitions: Displacement and Distance Traveled

Suppose a particle moves along a path in the plane so that its velocity at any given time t is $v(t) = (v_1(t), v_2(t))$

- 1. Displacement from t=a to t=b: $\langle \int_a^b v_1(t), \int_a^b v_2(t) \rangle$
- 2. Position at time t=#: $\langle inital\ condition\ vector \rangle + \langle displacement\ vector \rangle$
- 3. Distance Traveled from t=a to t=b: $\int_a^b |v(t)| dt = \int_a^b \sqrt{(v_1(t))^2 + (v_2(t))^2} dt$

Ex: A particle moves in the plane so that its position at any time $t \ge 0$ is given by $(\sin(t), \frac{t^2}{2})$.

- a. Find the position vector:
- b. Find the velocity vector:
- c. Find the acceleration vector:
- d. Describe the position and motion of the particle at t=6.

Ex: A particle moves in the plane with position vector $r(t) = \langle \sin(3t), \cos(5t) \rangle$.	
a.	Find the velocity vector:
b.	Find the acceleration vector:
c.	Determine the path of the particle:

Ex: A particle moves in the plane with position vector $\langle \cos(3t), \sin(2t) \rangle$.

- a. Find the velocity vector:
- b. Find the acceleration vector:
- c. Determine the path of the particle:

Ex: A particle moves in an elliptical path so that its position at any time $t \ge 0$ is given by (4sint, 2cost).

- a. Find the velocity and acceleration vectors:
- b. Find $v(\frac{\pi}{4})$, $a(\frac{\pi}{4})$, speed at $\frac{\pi}{4}$ and direction of motion at $\frac{\pi}{4}$
- c. Sketch the path of the particle:
- d. Does it travel clockwise or counterclockwise?
- e. Distance traveled from t=0 to t= $\frac{\pi}{4}$

Ex: A particle moves in the plane $t\ge 0$ with position x=sin4tcost, y=sin2t.

- a. Find the velocity at $t=\frac{5\pi}{4}$
- b. Find the speed at $t=\frac{5\pi}{4}$
- c. Find the direction of motion at $t = \frac{5\pi}{4}$
- d. Draw the path of the particle:
- e. Find the distance traveled from t=0 to t= $\frac{5\pi}{4}$

Ex: A particle moves with velocity vector $v(t) = \langle \pi - 3\pi \cos(\pi t), 2t - \pi \sin(\pi t) \rangle$. At t=0 the particle is at (1,5).

- a. Find the position at t=4.
- b. What is the total distance traveled from t=0 to t=4.
- c. Determine the path the particle travels going from (1,5) to (9,21):