10.2 Vectors in the Plane

A **two-dimensional vector** v is an ordered pair of real numbers, denoted in **component form** as (a, b). The numbers a and b are the **components** of the vector v. The **standard representation** of the vector (a, b) is the arrow from the origin to the point (a, b). The **magnitude** (or absolute value) of v, denoted |v|, is the length of the arrow, and the direction of v is the direction in which the arrow is pointing. The vector 0 = (0,0) called the **zero vector**, has zero length and no direction.

The **magnitude** of the vector $\langle a, b \rangle$ is the nonnegative real number $|\langle a, b \rangle| = \sqrt{a^2 + b^2}$. The direction angle of a nonzero vector is the smallest nonnegative angle θ formed with the positive x axis as the initial ray and the standard representation of \boldsymbol{v} as the terminal ray.

<u>HMT (Head Minus Tail) Rule</u> – If any arrow has initial point (x_1, y_1) and terminal point (x_2, y_2) , it represents the vector $(x_2 - x_1, y_2 - y_1)$.

Find Magnitude and Direction

Find Component Form and Magnitude

1. Find the component of a vector with magnitude 6 and direction angle $\frac{3\pi}{2}$.

2. Find the component form and magnitude of a vector from (4,-7) to (-1,5).

Vector Operations

Let $u=\langle u_1+u_2\rangle$ and $v=\langle v_1+v_2\rangle$

The sum or resultant of the vectors u and v is $u+v=\langle u_1+v_1,u_2+v_2\rangle$.

The product of the scalar k and the vector u is $ku = k\langle u_1, u_2 \rangle = \langle ku_1, ku_2 \rangle$.

The **opposite** of a vector v is -v = (-1)v so u - v = u + (-v).

 $\frac{v}{|v|}$ is a vector of magnitude 1, called a unit vector. Its component form is $\langle cos\theta, sin\theta \rangle$, where θ is the direction angle of \mathbf{v} . For this reason $\frac{v}{|v|}$ is sometimes called the **direction vector** of \mathbf{v} .

The sum of two vectors **u** and **v** can be represented geometrically by arrows in two ways:

Performing Operations on Vectors

Properties of Vectors

- 1. u+v=v+u
- 2. (u+v)+w=u+(v+w)
- 3. u+0=u
- 4. u+(-u)=0
- 5. O(u)=0
- 6. 1u=u
- 7. a(bu)=(ab)u
- 8. a(u+v)=au+av
- 9. (a+b)u=au+bu