MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

.nd dy/dx in terms of t.

1)
$$x = 2 \cot t$$
, $y = 3 \csc t$

A)
$$-\frac{2}{3}\csc t$$
 B) $-\frac{2}{3}\cos t$ C) $\frac{3}{2}\cos t$

B)
$$-\frac{2}{3}\cos t$$

C)
$$\frac{3}{2}$$
 cos t

D)
$$\frac{3}{2}$$
 cot t

Determine analytically at the given value of t whether the parametric curve is increasing, decreasing, or neither.

2)
$$x = 5t^2 + t$$
, $y = t^2 - 10t + 3$, $t = 1$

1)

Solve the problem.

3) Find the points at which the tangent to the curve
$$x = -5 + \sin t$$
, $y = 4 + \cos t$ is horizontal.

B)
$$(0, 5)$$
 and $(\pi, 3)$

Find d^2y/dx^2 in terms of t.

4)
$$x = 5 \sin t$$
, $y = 4 \cos t$

A)
$$\frac{4}{5}$$
 cot t

B)
$$-\frac{4}{5}\sec^3 t$$

C)
$$-\frac{4}{25} \sec t$$

A)
$$\frac{4}{5}$$
 cot t B) $-\frac{4}{5}$ sec³t C) $-\frac{4}{25}$ sec t D) $-\frac{4}{25}$ sec³t

4) _____

Determine analytically at the given value of t whether the parametric curve is concave up, concave down, or neither.

5)
$$x = \frac{t^2}{2} + 9t$$
, $y = \frac{t^2}{2} - 2t$, $t = 2$

5) _____

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Find the length of the curve.

6)
$$x = \ln(\csc t + \cot t) - \cos t$$
, $y = \sin t$, $\pi/4 \le t \le \pi/2$

7)
$$x = \frac{1}{3}t^3$$
, $y = 5t^2$, $0 \le t \le 2$

Find the component form of the vector with the given magnitude that forms the given directional angle with the positive x-axis.

8) 20, $\pi/6$

Find the component form of the specified vector.

9) the vector from the point A = (9, 7) to the origin

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find the indicated vector in component form.

- 10) Let $\mathbf{u} = \langle -4, 3 \rangle$, $\mathbf{v} = \langle -8, -1 \rangle$. Find $\mathbf{u} 6\mathbf{v}$.
- B) (-52, -3)
- C) (-12, -12) D) (-1, 54)

10)

If r(t) is the position vector of a particle in the plane at time t, find the particle's speed at the given value of t.

- 11) $r(t) = \langle 2 \ln (7t), 5t^3 \rangle, t = 2$
 - A) $\sqrt{61}$
- B) $\sqrt{54,015}$
- C) $\sqrt{3601}$
- D) 3601

particle moves in the plane with the given position vector. Find the velocity or acceleration vector, as indicated, at the specified time.

- 12) $r(t) = \langle 5t + 6, -e^{-7t} \rangle$. Find the velocity vector at time t = 3.
 - A) $(5, -e^{-21})$ B) $(6, 7e^{-21})$
- C) $(5, -7e^{-21})$ D) $(5, 7e^{-21})$

12) _____

Solve the problem.

- 13) The path of a particle is given by $r(t) = (9t 3t^2, t^3 9t)$. Find the coordinates of each point on the 13) _____ path where the horizontal component of the velocity of the particle is zero.
 - A) (0, 0) and (0, 0.0000)

- B) (0, 6.750)
- C) (1.500, 1.732) and (1.500, -1.732)
- D) (6.750, -10.12)
- 14) A particle moves in the plane so that its position at any time $t \ge 0$ is given by 14) ____ $x = 2(e^{t} + e^{-t}), y = \frac{7}{2}(e^{t} - e^{-t})$

Eliminate the parameter and find an equation in terms of x and y for the path of the particle.

- A) $\frac{x^2}{16} \frac{y^2}{49} = 1$ B) $\frac{x^2}{16} + \frac{y^2}{49} = 1$ C) $\frac{x^2}{4} \frac{y^2}{7} = 1$ D) $\frac{y^2}{49} \frac{x^2}{16} = 1$

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

The velocity v(t) of a particle moving in the plane is given, along with the position of the particle at time t = 0. Find the sition of the particle at time $t = t_1$.

15)
$$v(t) = \langle 15t^2 - 10t, 4 + \cos \pi t \rangle$$
, initial position = $\langle 1, 2 \rangle$, $t_1 = 3$

15) _____

Solve the problem.

- 16) The velocity v(t) of a particle moving in the plane is given by the vector $(3\pi \cos 2t, 5\pi \sin 4t)$. Find the distance traveled by the particle from t = 0 to t = 5.
- 17) The position of a particle in the plane at time t is given by $r(t) = \langle 4t + \cos t, 6t + \sin t \rangle$. Find an expression that represents the distance the particle travels from time t = 0 to t = 5.

Change the given polar coordinates (r, θ) to rectangular coordinates (x, y).

$$(6, \frac{5\pi}{6})$$

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find two sets of polar coordinates for the point with the given rectangular coordinates.

19)
$$(-9\sqrt{3}, 9)$$

19) ____

Find two pairs of polar coordinates each with $-\pi < \theta \le \pi$.

A)
$$\left[9, \frac{5\pi}{6}\right]$$
 and $\left[9, -\frac{\pi}{6}\right]$
C) $\left[-18, \frac{5\pi}{6}\right]$ and $\left[18, -\frac{\pi}{6}\right]$

B)
$$\left(18, \frac{5\pi}{6}\right)$$
 and $\left(-18, -\frac{\pi}{6}\right)$
D) $\left(18, \frac{2\pi}{3}\right)$ and $\left(-18, -\frac{\pi}{3}\right)$

Describe the graph of the polar equation.

20)
$$r^2 = 32r \cos \theta$$

20) ____

- A) Circle of radius 16 and center (0, 16) C) Circle of radius 16 and center (16, 0)

- D) Vertical line passing through (32, 0)

B) Horizontal line passing through (0, 32)

21) $r \cos \theta = 11$

21)

- A) Vertical line through (11, 0)
- B) Circle centered at origin with radius 11
- C) Line with slope 11 passing through the origin
- D) Horizontal line through (0, 11)

Find the slope of the polar curve at the indicated point.

22)
$$r = 3 + 6 \cos \theta$$
, $\theta = \frac{\pi}{2}$

22) ____

A) 2

- B) $-\frac{1}{2}$
- C) 2
- D) $\frac{1}{2}$

Find the area of the specified region.

23) inside the limacon $r = 6 + 2 \sin \theta$

- A) 76π
- B) $76\pi 24$
- C) 38π
- D) $38\pi + 24$

23)

24) inside the lemniscate $r^2 = 6 \sin 2\theta$ and outside the circle $r = \sqrt{3}$

24) _

- A) $3\sqrt{3} \pi + 6$
- B) 2π
- C) $\frac{1}{3}(2\pi + 3\sqrt{3})$ D) $3\sqrt{3} \pi$

25) inside one loop of the lemniscate $r^2 = 4 \cos 2\theta$

A) 1

B) 4

C) 2

D) 8

25) ____