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Section 9.4 Radius of Convergence 511

rcises 1 and 2, find the values of x for which the equation is an

/Exel

gotity. SUpport your answer graphically.
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1Exercises 3 and 4, use a comparison test to show that the series
onverges for all x.
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p Exercises 5 and 6, show that the series converges absolutely.
. (cos x)! 2. 2(sin x)*
KOs A 6. A
2 2 nl +1 nl+3
n=0 n=0

I Exercises 7-22, find the radius of convergence of the power
weries.
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In Exercises 23-28, find the interval of convergence of the series and,
within this interval, the sum of the series as a function of x.
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In Exercises 29-44, determine the convergence or diverzence of the
series. Identify the test (or tests) you use. There may be more than one
correct way to determine convergence or divergence of a given series.
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44 =, n! (Hint: If you do not recognize L, try recognizing the
: E n®  reciprocal of L.)

45. Give an example to show that the converse of the nth-Term Test is
false. That is, >, a, might diverge even though lim,_,. a, = 0.

46. Find two convergent series X a, and 2 b, such that
S (a,/b,) diverges

47. Writing to Learn We reviewed in Section 9.1 how to find the
interval of convergence for the geometric series 2 o x". Can
we find the interval of convergence of a geometric series by
using the Ratio Test? Explain.

In Exercises 48—54, find the sum of the telescoping series.
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