ection 9.5 Exercises

Exercises 1 and 2, use the Integral Test to determine convergence or vergence of the series.

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$$

2.
$$\sum_{n=1}^{\infty} n^{-3/2}$$

Find the first six partial sums of $\sum_{n=0}^{\infty} \frac{1}{n}$

i. If S_k is the k-th partial sum of $\sum_{n=1}^{\infty} \frac{1}{n}$, find the first value of k for which $S_k > 4$.

Exercises 5 and 6, use the Limit Comparison Test to determine onvergence or divergence of the series.

5.
$$\sum_{n=1}^{\infty} \frac{3n-1}{n^2+1}$$

6.
$$\sum_{n=0}^{\infty} \frac{2^n}{3^n + 1}$$

B Exercises 7-22, determine whether the series converges or diverges. there may be more than one correct way to determine convergence or ivergence of a given series.

$$7. \sum_{n=1}^{\infty} \frac{5}{n+1}$$

$$8. \sum_{n=1}^{\infty} \frac{3}{\sqrt{n}}$$

$$9. \sum_{n=2}^{\infty} \frac{\ln n}{n}$$

10.
$$\sum_{n=1}^{\infty} \frac{1}{2n-1}$$

11.
$$\sum_{1}^{\infty} \frac{1}{(\ln 2)^n}$$

12.
$$\sum_{n=1}^{\infty} \frac{1}{(\ln 3)^n}$$

13.
$$\sum_{n=1}^{\infty} n \sin\left(\frac{1}{n}\right)$$

14.
$$\sum_{n=0}^{\infty} \frac{e^n}{1 + e^{2n}}$$

15.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 1}$$

16.
$$\sum_{n=1}^{\infty} \frac{5n^3 - 3n}{n^2(n+2)(n^2+5)}$$

17.
$$\sum_{n=1}^{\infty} \frac{3^{n-1}+1}{3^n}$$

18.
$$\sum_{n=2}^{\infty} (-1)^{n+1} \frac{1}{\ln n}$$

19.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{10^n}{n^{10}}$$

20.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sqrt{n+1}}{n+1}$$

21.
$$\sum_{n=2}^{\infty} (-1)^{n+1} \frac{\ln n}{\ln n^2}$$

22.
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n^2} \right)$$

In Exercises 23-26, determine whether the series converges absolutely, converges conditionally, or diverges. Give reasons for your answer. Find a bound for the truncation error after 99 terms.

23.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1+n}{n^2}$$

24.
$$\sum_{n=1}^{\infty} (-1)^{n+1} (0.1)^n$$

25.
$$\sum_{n=2}^{\infty} (-1)^{n+1} \frac{1}{n \ln n}$$

26.
$$\sum_{n=1}^{\infty} (-1)^n n^2 \left(\frac{2}{3}\right)^n$$

In Exercises 27-32, determine whether the series converges absolutely, converges conditionally, or diverges. Give reasons for your answers.

27.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n!}{2^n}$$

28.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin n}{n^2}$$

29.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{1+\sqrt{n}}$$

$$30, \sum_{n=1}^{\infty} \frac{\cos n\pi}{n\sqrt{n}}$$

31.
$$\sum_{n=1}^{\infty} \frac{\cos n\pi}{n}$$

32.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n} + \sqrt{n+1}}$$

In Exercises 33 and 34, show how to rearrange the terms of the series from the specified exercise to form (a) a divergent series, and (b) a series that converges to 4.

33. Exercise 23

34. Exercise 25

In Exercises 35-50, find (a) the interval of convergence of the series. For what values of x does the series converge (b) absolutely, (c) conditionally?

$$35. \sum_{n=0}^{\infty} x^n$$

36.
$$\sum_{n=0}^{\infty} (x+5)^n$$

37.
$$\sum_{n=0}^{\infty} (-1)^n (4x+1)^n$$

38.
$$\sum_{n=1}^{\infty} \frac{(3x-2)^n}{n}$$

39.
$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{10^n}$$

$$40. \sum_{n=0}^{\infty} \frac{nx^n}{n+2}$$

$$41. \sum_{n=1}^{\infty} \frac{x^n}{n\sqrt{n} \, 3^n}$$

42.
$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{n!}$$

43.
$$\sum_{n=0}^{\infty} \frac{n(x+3)^n}{5^n}$$

44.
$$\sum_{n=0}^{\infty} \frac{nx^n}{4^n(n^2+1)}$$

$$45. \sum_{n=0}^{\infty} \frac{\sqrt{n} x^n}{3^n}$$

46.
$$\sum_{n=0}^{\infty} n! (x-4)^n$$

47.
$$\sum_{n=0}^{\infty} (-2)^n (n+1)(x-1)^n$$
 48. $\sum_{n=1}^{\infty} \frac{(4x-5)^{2n+1}}{n^{3/2}}$

48.
$$\sum_{n=1}^{\infty} \frac{(4x-5)^{2n+1}}{n^{3/2}}$$

49.
$$\sum_{n=1}^{\infty} \frac{(x+\pi)^n}{\sqrt{n}}$$

$$50. \sum_{n=0}^{\infty} (\ln x)^n$$

- 51. Not only do the figures in Example 2 show that the nth partial sum of the harmonic series is less than $1 + \ln n$; they also show that it is greater than $\ln (n + 1)$. Suppose you had started summing the harmonic series with $S_1=1$ at the time the universe was formed, 13 billion years ago. If you had been able to add a term every second since then, about how large would your partial sum be today? (Assume a 365-day year.)
- 52. Writing to Learn Write out a proof of the Integral Test (Theorem 10) for N = 1, explaining what you see in Figure 9.15.