ection 9.5 Exercises

[Exercises tand 2, use the Integral Test to determine convergence or
wergence of the series.
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i, Find the first six partial sums of
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\, If S, is the k-th partial sum of 2 l find the first value of k for
which S, > 4. rfi

iExercises 5 and 6, use the Limit Comparison Test to determine
savergence or divergence of the series.
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2 Exercises 7-22, determine whether the series converges or diverges.
fhere may be more than one correct way to determine convergence or
fivergence of a given series.
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In Bxercises 2326, determine whether the series converges absolutely,
converges conditionally, or diverges. Give reasons for your answer.
Find a bound for the truncation error after 99 terms.
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In Exercises 27-32, determine whether the series converges absolutely,
converges conditionally, or diverges. Giveé reasons for your answers.
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In Exercises 33 and 34, show how to rearrange the terms of the
series from the specified exercise to form (a) a divergent series, and
(b) a series that converges to 4, '
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In Exercises 35-50, find (a) the interval of convergence of the
series. For what values of x does the series converge (b) absolutely,

(¢) conditionally? &
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51, Not only do the figures in Example 2 show that the nth partial
sum of the harmonic series is less than 1 + ln 7z; they also show
that it is greater than In (n + 1). Suppose you had started
summing the harmonic series with §; = 1 at the time the universe
was formed, 13 billion years ago. If you had been able to add a
term every second since then, about how large would your partial
sum be today? (Assume a 365-day year.)

52. Writing to Learn Write out a proof of the Integral Test
(Theorem 10) for N = 1, explaining what you see-in Figure
9.15.




