CALCULUS BC

WORKSHEET ON PARAMETRIC EQUATIONS AND GRAPHING

Work these on notebook paper. Make a table of values and sketch the curve, indicating the direction of your graph. Then eliminate the parameter. Do not use your calculator.

1.
$$x = 2t + 1$$
 and $y = t - 1$

2.
$$x = 2t$$
 and $y = t^2$, $-1 \le t \le 2$

3.
$$x = 2 - t^2$$
 and $y = t$

4.
$$x = \sqrt{t+2}$$
 and $y = 3-t$

5.
$$x = t - 2$$
 and $y = 1 - \sqrt{t}$

6.
$$x = 2t$$
 and $y = |t-1|$

7.
$$x = t$$
 and $y = \frac{1}{t^2}$

8.
$$x = 2\cos t - 1$$
 and $y = 3\sin t + 1$

9.
$$x = 2\sin t - 1$$
 and $y = \cos t + 2$

10.
$$x = \sec t$$
 and $y = \tan t$

CALCULUS BC

WORKSHEET ON PARAMETRICS AND CALCULUS

Work these on **notebook paper**. Do not use your calculator.

On problems 1-5, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.

1.
$$x = t^2$$
, $y = t^2 + 6t + 5$

4.
$$x = \ln t$$
, $y = t^2 + t$

2.
$$x = t^2 + 1$$
, $y = 2t^3 - t^2$

5.
$$x = 3\sin t + 2$$
, $y = 4\cos t - 1$

3.
$$x = \sqrt{t}$$
, $y = 3t^2 + 2t$

6. A curve C is defined by the parametric equations $x = t^2 + t - 1$, $y = t^3 - t^2$.

(a) Find
$$\frac{dy}{dx}$$
 in terms of t .

(b) Find an equation of the tangent line to C at the point where t=2.

7. A curve C is defined by the parametric equations $x = 2\cos t$, $y = 3\sin t$

(a) Find
$$\frac{dy}{dx}$$
 in terms of t.

(b) Find an equation of the tangent line to C at the point where $t = \frac{\pi}{4}$.

On problems 8 - 10, find:

(a)
$$\frac{dy}{dx}$$
 in terms of t .

(b) all points of horizontal and vertical tangency

8.
$$x = t + 5$$
, $y = t^2 - 4t$

9.
$$x = t^2 - t + 1$$
, $y = t^3 - 3t$

10.
$$x = 3 + 2\cos t$$
, $y = -1 + 4\sin t$

On problems 11 - 12, a curve C is defined by the parametric equations given. For each problem, write an integral expression that represents the length of the arc of the curve over the given interval.

11.
$$x = t^2$$
, $y = t^3$, $0 \le t \le 2$

12.
$$x = e^{2t} + 1$$
, $y = 3t - 1$, $-2 \le t \le 2$

Answers to Worksheet on Parametric Equations and Graphing

1.
$$x = 2t + 1$$
 and $y = t - 1$

t	-2	-1	0	1	2
х	-3	-1	1	3	5
y	-3	-2	-1	0	1

To eliminate the parameter, solve for $t = \frac{1}{2}x - \frac{1}{2}$.

Substitute into y's equation to get $y = \frac{1}{2}x - \frac{3}{2}$.

$2. \ x = 2t \ \text{and} \ y = t^2, \ -1 \le t \le 2$

t	-1	0	1	2
x	-2	0	2	4
y	1	0	1	4

To eliminate the parameter, solve for $t = \frac{x}{2}$.

Substitute into y's equation to get

$$y = \frac{x^2}{4}$$
, $-2 \le x \le 4$. Note: The restriction on x

is needed for the graph of $y = \frac{x^2}{4}$ to match the parametric graph.

3. $x = 2 - t^2$ and y = t

ĺ	t	-2	-1	0	1	2
İ	х	-2	1	2	1	-2
İ	у	-2	-1	0	1	2

To eliminate the parameter, notice that t = y. Substitute into x's equation to get

$$x=2-y^2.$$

4.
$$x = \sqrt{t+2}$$
 and $y = 3-t$

t	-2	-1	2	7
х	0	1	2	3
y	5	4	1	-4

To eliminate the parameter, solve for $t = x^2 - 2$. Substitute into y's equation to get

$$y = 5 - x^2$$
, $x \ge 0$. Note: The restriction on x is

needed for the graph of $y = 5 - x^2$ to match the parametric graph.

5. x = t - 2 and $y = 1 - \sqrt{t}$

t	0	1	4	9	
x	-2	-1	2	7	
y	1	0	-1	-2	

To eliminate the parameter, solve for t = x + 2, $x \ge -2$ (since t^{-3} 0). Substitute into y's equation to get $y = 1 - \sqrt{x + 2}$.

$$6. \ x = 2t \text{ and } \ y = |t - 1|$$

t	-2	-1	0	1	2	3
x	-1	-2	0	2	4	6
y	3	2	1	0	1	2

To eliminate the parameter, solve for $t = \frac{x}{2}$.

Substitute into y's equation to get

$$y = \left| \frac{x}{2} - 1 \right| \text{ or } y = \frac{\left| x - 2 \right|}{2}.$$

7. x = t and $y = \frac{1}{t^2}$

		ı					
t	-2	-1	-1/2	0	1/2	1	2
х	-2	-1	— 1/2	0	1/2	1	2
y	1/4	1	4	und.	4	1	1/4

To eliminate the parameter, notice that t = x.

Substitute into y's equation to get $y = \frac{1}{x^2}$.

8.
$$x = 2\cos t - 1$$
 and $y = 3\sin t + 1$

t	0	π/2	π	$3\pi/2$	2π
x	1	-1	-3	-1	1
у	1	4	1	-2	1

To eliminate the parameter, solve for $\cos t$ in x's equation and $\sin t$ in y's equation. Substitute into the trigonometric identity

$$\cos^2 t + \sin^2 t = 1$$
 to get $\frac{(x+1)^2}{4} + \frac{(y-1)^2}{9} = 1$.

9. $x = 2\sin t - 1$ and $y = \cos t + 2$

t	0	π/2	π	$3\pi/2$	2π	
x	-1	1	-1	-3	-1	
у	3	2	1	2	3	

To eliminate the parameter, solve for y in y's equation and y in y's equation. Substitute into the trigonometric identity

to get		
	to get	to get

10. $x = \sec t$ and $y = \tan t$

t	0	$\pi/4$	π/2	$3\pi/4$	π	5π/4	$3\pi/2$	$7\pi/4$	2π
X	1	$\sqrt{2}$	und.	$-\sqrt{2}$	-1	$-\sqrt{2}$	und.	$\sqrt{2}$	1
y	0	1	und.	-1	0	1	und.	-1	0

To eliminate the parameter, substitute into the trigonometric identity $1 + \tan^2 t = \sec^2 t$ to get $1 + y^2 = x^2$ or $x^2 - y^2 = 1$.

Answers to Worksheet on Parametrics and Calculus

1.
$$\frac{dy}{dx} = \frac{2t+6}{2t} = 1 + \frac{3}{t}$$
; $\frac{d^2y}{dx^2} = \frac{-\frac{3}{t^2}}{2t} = -\frac{3}{2t^3}$

2.
$$\frac{dy}{dt} = 3t - 1$$
; $\frac{d^2y}{dx^2} = \frac{3}{2t}$

3.
$$\frac{dy}{dx} = \frac{6t+2}{\frac{1}{2}t^{-\frac{1}{2}}} = 12t^{\frac{3}{2}} + 4t^{\frac{1}{2}}; \quad \frac{d^2y}{dx^2} = \frac{18t^{\frac{1}{2}} + 2t^{-\frac{1}{2}}}{\frac{1}{2}t^{-\frac{1}{2}}} = 36t + 4$$

4.
$$\frac{dy}{dx} = \frac{2t+1}{\frac{1}{t}} = 2t^2 + t; \quad \frac{d^2y}{dx^2} = \frac{4t+1}{\frac{1}{t}} = 4t^2 + t$$

5.
$$\frac{dy}{dx} = \frac{-4\sin t}{3\cos t} = -\frac{4}{3}\tan t$$
; $\frac{d^2y}{dx^2} = \frac{-\frac{4}{3}\sec^2 t}{3\cos t} = -\frac{4}{9}\sec^3 t$

6. (a)
$$\frac{dy}{dx} = \frac{3t^2 - 2t}{2t + 1}$$

(b)
$$y-4=\frac{8}{5}(x-5)$$

7. (a)
$$\frac{dy}{dx} = \frac{3\cos t}{-2\sin t} = -\frac{3}{2}\cot t$$
 (b) $y - \frac{3\sqrt{2}}{2} = -\frac{3}{2}(x - \sqrt{2})$

(b)
$$y - \frac{3\sqrt{2}}{2} = -\frac{3}{2}(x - \sqrt{2})$$

8. (a)
$$\frac{dy}{dx} = \frac{2t-4}{1}$$

8. (a) $\frac{dy}{dx} = \frac{2t-4}{1}$ (b) Let tangent at (7, -4). No point of tangency on this curve.

(b) Vert. tangent at the points (1, -2) and (3, 2). Horiz. tangent at $\left(\frac{3}{4}, -\frac{11}{8}\right)$.

10. (a)
$$\frac{dy}{dx} = \frac{4\cos t}{-2\sin t} = -2\cot t$$

(b) Vert. tangent at (3, 3) and (3, -5). Horiz. tangent at (5, -1) and (1, -1).

11.
$$s = \int_0^2 \sqrt{4t^2 + 9t^4} dt$$

12.
$$s = \int_{-2}^{2} \sqrt{4e^{4t} + 9} dt$$

CALCULUS BC WORKSHEET I ON VECTORS

Work the following on notebook paper. Use your calculator on problems 10 and 13c only.

- 1. If $x = t^2 1$ and $y = e^{t^3}$, find $\frac{dy}{dx}$.
- 2. If a particle moves in the xy-plane so that at any time t > 0, its position vector is $\langle \ln(t^2 + 5t), 3t^2 \rangle$, find its velocity vector at time t = 2.
- 3. A particle moves in the xy-plane so that at any time t, its coordinates are given by $x = t^5 1$ and $y = 3t^4 2t^3$. Find its acceleration vector at t = 1.
- 4. If a particle moves in the xy-plane so that at time t its position vector is $\left\langle \sin\left(3t \frac{\pi}{2}\right), 3t^2\right\rangle$, find the velocity vector at time $t = \frac{\pi}{2}$.
- 5. A particle moves on the curve $y = \ln x$ so that its x-component has derivative x'(t) = t + 1 for $t \ge 0$. At time t = 0, the particle is at the point (1, 0). Find the position of the particle at time t = 1.
- 6. A particle moves in the xy-plane in such a way that its velocity vector is $\langle 1+t, t^3 \rangle$. If the position vector at t = 0 is $\langle 5, 0 \rangle$, find the position of the particle at t = 2.
- 7. A particle moves along the curve xy = 10. If x = 2 and $\frac{dy}{dt} = 3$, what is the value of $\frac{dx}{dt}$?
- 8. The position of a particle moving in the xy-plane is given by the parametric equations $x = t^3 \frac{3}{2}t^2 18t + 5$ and $y = t^3 6t^2 + 9t + 4$. For what value(s) of t is the particle at rest?
- 9. A curve C is defined by the parametric equations $x = t^3$ and $y = t^2 5t + 2$. Write the equation of the line tangent to the graph of C at the point (8, -4).
- 10. A particle moves in the xy-plane so that the position of the particle is given by $x(t) = 5t + 3\sin t$ and $y(t) = (8-t)(1-\cos t)$ Find the velocity vector at the time when the particle's horizontal position is x = 25.
- 11. The position of a particle at any time $t \ge 0$ is given by $x(t) = t^2 3$ and $y(t) = \frac{2}{3}t^3$.
 - (a) Find the magnitude of the velocity vector at time t = 5.
 - (b) Find the total distance traveled by the particle from t = 0 to t = 5. (c) Find $\frac{dy}{dx}$ as a function of x.
- 12. Point P(x, y) moves in the xy-plane in such a way that $\frac{dx}{dt} = \frac{1}{t+1}$ and $\frac{dy}{dt} = 2t$ for $t \ge 0$.
 - (a) Find the coordinates of P in terms of t given that t = 1, $x = \ln 2$, and y = 0.
 - (b) Write an equation expressing y in terms of x.
 - (c) Find the average rate of change of y with respect to x as t varies from 0 to 4.
 - (d) Find the instantaneous rate of change of y with respect to x when t = 1.
- 13. Consider the curve C given by the parametric equations $x = 2 3\cos t$ and $y = 3 + 2\sin t$, for $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$.
 - (a) Find $\frac{dy}{dx}$ as a function of t. (b) Find the equation of the tangent line at the point where $t = \frac{\pi}{4}$.
 - (c) The curve C intersects the y-axis twice. Approximate the length of the curve between the two y-intercepts.

Answers to Worksheet 1 on Vectors

$$1. \frac{dy}{dx} = \frac{3t^2e^{t^3}}{2t} = \frac{3te^{t^3}}{2}$$

$$2. \left\langle \frac{9}{14}, 12 \right\rangle$$

$$5. \left\langle 5 \right\rangle$$

3.
$$\langle 20, 24 \rangle$$

$$4.\langle -3, 3\pi \rangle$$

$$5.\left(\frac{5}{2},\ln\left(\frac{5}{2}\right)\right)$$

7.
$$-\frac{6}{5}$$

8.
$$t = 3$$

9.
$$y+4=-\frac{1}{12}(x-8)$$

10.
$$\langle 7.008, -2.228 \rangle$$

(b)
$$\frac{2}{3} \left(26^{\frac{3}{2}} - 1 \right)$$

(c)
$$t = \sqrt{x+3}$$

11. (a)
$$\sqrt{2600}$$
 or $10\sqrt{26}$

12. (a) $(\ln(t+1), t^2-1)$

(b)
$$y = (e^x - 1)^2 - 1$$
 or $y = e^{2x} - 2e^x$.

(c)
$$\frac{16}{\ln 5}$$

13. (a)
$$\frac{2}{3}$$
 cot t

(b)
$$y - (3 + \sqrt{2}) = \frac{2}{3} \left(x - \left(2 - \frac{3\sqrt{2}}{2} \right) \right)$$
 (c) 3.756

AP CALCULUS BC

Name:

WORKSHEET ON VECTORS HOMEWORK

Work the following on notebook paper. Use your calculator on problems 7 - 11 only.

1. If
$$x = e^{2t}$$
 and $y = \sin(3t)$, find $\frac{dy}{dx}$ in terms of t.

2. Write an integral expression to represent the length of the path described by the parametric

equations
$$x = \cos^3 t$$
 and $y = \sin^2 t$ for $0 \le t \le \frac{\pi}{2}$.

- 3. For what value(s) of t does the curve given by the parametric equations $x = t^3 t^2 1$ and $y = t^4 + 2t^2 8t$ have a vertical tangent?
- 4. For any time $t \ge 0$, if the position of a particle in the xy-plane is given by $x = t^2 + 1$ and $y = \ln(2t + 3)$, find the acceleration vector.
- 5. Find the equation of the tangent line to the curve given by the parametric equations $x(t) = 3t^2 4t + 2$ and $y(t) = t^3 4t$ at the point on the curve where t = 1.
- 6. If $x(t) = e^{t} + 1$ and $y = 2e^{2t}$ are the equations of the path of a particle moving in the xy-plane, write an equation for the path of the particle in terms of x and y.
- 7. A particle moves in the xy-plane so that its position at any time t is given by $x = \cos(5t)$ and $y = t^3$. What is the speed of the particle when t = 2?
- 8. The position of a particle at time $t \ge 0$ is given by the parametric equations

$$x(t) = \frac{(t-2)^3}{3} + 4$$
 and $y(t) = t^2 - 4t + 4$.

- (a) Find the magnitude of the velocity vector at t = 1.
- (b) Find the total distance traveled by the particle from t = 0 to t = 1.
- (c) When is the particle at rest? What is its position at that time?
- 9. An object moving along a curve in the xy-plane has position (x(t), y(t)) at time with

$$\frac{dx}{dt} = 1 + \tan(t^2)$$
 and $\frac{dy}{dt} = 3e^{\sqrt{t}}$. Find the acceleration vector and the speed of the object when $t = 5$.

- 10. A particle moves in the xy-plane so that the position of the particle is given by $x(t) = t + \cos t$ and $y(t) = 3t + 2\sin t$, $0 \le t \le \pi$. Find the velocity vector when the particle's vertical position is y = 5.
- 11. An object moving along a curve in the xy-plane has position (x(t), y(t)) at time t with $\frac{dx}{dt} = 2\sin(t^3)$

and
$$\frac{dy}{dt} = \cos(t^2)$$
 for $0 \le t \le 4$. At time $t = 1$, the object is at the position $(3, 4)$.

- (a) Write an equation for the line tangent to the curve at (3, 4).
- (b) Find the speed of the object at time t = 2.
- (c) Find the total distance traveled by the object over the time interval $0 \le t \le 1$.
- (d) Find the position of the object at time t = 2.

12. A particle moving along a curve in the xy-plane has position (x(t), y(t)) at time t with

$$\frac{dx}{dt} = \arcsin\left(\frac{t}{t+4}\right)$$
 and $\frac{dy}{dt} = \ln\left(t^2+3\right)$. At time $t=1$, the particle is at the position (5, 6).

- (a) Find the speed of the object at time t = 2.
- (b) Find the total distance traveled by the object over the time interval $1 \le t \le 2$.
- (c) Find y(2).
- (d) For $0 \le t \le 3$, there is a point on the curve where the line tangent to the curve has slope 8. At what time t, $0 \le t \le 3$, is the particle at this point? Find the acceleration vector at this point.

13. 2006 AP CALCULUS BC FREE-RESPONSE QUESTIONS (Form B)

2. An object moving along a curve in the xy-plane is at position (x(t), y(t)) at time t, where

$$\frac{dx}{dt} = \tan(e^{-t})$$
 and $\frac{dy}{dt} = \sec(e^{-t})$

for $t \ge 0$. At time t = 1, the object is at position (2, -3).

- (a) Write an equation for the line tangent to the curve at position (2, -3).
- (b) Find the acceleration vector and the speed of the object at time t = 1.
- (c) Find the total distance traveled by the object over the time interval $1 \le t \le 2$.
- (d) Is there a time $t \ge 0$ at which the object is on the y-axis? Explain why or why not.

Answers to Worksheet 2 on Vectors

$$1.\frac{3\cos(3t)}{2e^{2t}}$$

2.
$$\int_0^{\pi/2} \sqrt{9\cos^4 t \sin^2 t + 4\sin^2 t \cos^2 t} \, dt$$

3.
$$t = 0$$
 and $t = \frac{2}{3}$

4.
$$v(t) = \left\langle 2t, \frac{2}{2t+3} \right\rangle, \ a(t) = \left(2, -\frac{4}{(2t+3)^2}\right)$$

5.
$$y+3=-\frac{1}{2}(x-1)$$

6.
$$y = 2x^2 - 4x + 2$$
.

7. 12.304

8. (a)
$$\sqrt{5}$$

(c) At rest when
$$t = 2$$
. Position = $(4, 0)$

9.
$$a(5) = \langle 10.178, 6.277 \rangle$$
, speed = 28.083

11. (a)
$$y-4=0.321(x-3)$$

13. AP Question – check online for ap solution

CALCULUS BC

WORKSHEET 3 ON VECTORS

Work the following on <u>notebook paper</u>. Use your calculator only on problems 3-7.

- 1. The position of a particle at any time $t \ge 0$ is given by $x(t) = t^2 2$, $y(t) = \frac{2}{3}t^3$.
- (a) Find the magnitude of the velocity vector at t = 2.
- (b) Set up an integral expression to find the total distance traveled by the particle from t = 0 to t = 4.
- (c) Find $\frac{dy}{dx}$ as a function of x.
- (d) At what time t is the particle on the y-axis? Find the acceleration vector at this time.
- 2. An object moving along a curve in the xy-plane has position (x(t), y(t)) at time t with the velocity vector $v(t) = \left(\frac{1}{t+1}, 2t\right)$. At time t = 1, the object is at $(\ln 2, 4)$.
- (a) Find the position vector.
- (b) Write an equation for the line tangent to the curve when t = 1.
- (c) Find the magnitude of the velocity vector when t = 1.
- (d) At what time t > 0 does the line tangent to the particle at (x(t), y(t)) have a slope of 12?
- 3. A particle moving along a curve in the xy-plane has position (x(t), y(t)), with $x(t) = 2t + 3\sin t$ and $y(t) = t^2 + 2\cos t$, where $0 \le t \le 10$.
- (a) Is the particle moving to the left or to the right when t = 2.4? Explain your answer.
- (b) Find the velocity vector at the time when the particle's vertical position is y = 7.
- 4. A particle moving along a curve in the xy-plane has position (x(t), y(t)) at time t with $\frac{dx}{dt} = 1 + \sin(t^3)$. The derivative $\frac{dy}{dt}$ is not explicitly given. At time t = 2, the object is at position (-5, 4).
- (a) Find the x-coordinate of the position at time t = 3.
- (b) For any $t \ge 0$, the line tangent to the curve at (x(t), y(t)) has a slope of t + 3. Find the acceleration vector of the object at time t = 2.
- 5. An object moving along a curve in the xy-plane has position (x(t), y(t)) at time t with

$$\frac{dx}{dt} = e^{\cos t}$$
 and $\frac{dy}{dt} = \sin(t^2)$ for $0 \le t \le 3$. At time $t = 3$, the object is at the point $(1, 4)$.

- (a) Find the equation of the tangent line to the curve at the point where t = 3.
- (b) Find the speed of the object at t = 3.
- (c) Find the total distance traveled by the object over the time interval $2 \le t \le 3$.
- (d) Find the position of the object at time t = 2.

6. A particle moving along a curve in the xy-plane has position (x(t), y(t)) at time t with $\frac{dx}{dt} = \sqrt{t^3 + 4}$ and $\frac{dy}{dt} = \cos^{-1}(e^{-t})$. At time t = 2, the particle is at the point (5, 3).

- (a) Find the acceleration vector for the particle at t=2.
- (b) Find the equation of the tangent line to the curve at the point where t = 2.
- (c) Find the magnitude of the velocity vector at t = 2.
- (d) Find the position of the particle at time t = 1.
- 7. An object moving along a curve in the xy-plane has position (x(t), y(t)) at time t with $\frac{dy}{dt} = 2 + \sin(e^t)$. The derivative $\frac{dx}{dt}$ is not explicitly given. At t = 3, the object is at the point (4, 5).
- (a) Find the y-coordinate of the position at time t = 1.
- (b) At time t = 3, the value of $\frac{dy}{dx}$ is -1.8. Find the value of $\frac{dx}{dt}$ when t = 3.
- (c) Find the speed of the object at time t=3.

Answers to Worksheet 3 on Vectors

1. (a)

- (c) $\frac{dy}{dx} = t = \sqrt{x+2}$ (d) $\langle 2, 4\sqrt{2} \rangle$
- 2. (a) $(\ln |t+1|, t^2+3)$

(c) $\frac{\sqrt{17}}{2}$

- (d) t = 2
- 3. \(\langle -0.968, 5.704\rangle
- 4. (a) -3.996 (b) $\langle -1.746, -6.741 \rangle$
- 5. (a) y-2=1.109(x-3)
- (b) 0.555

(c) 0.878

- (d) (0.529, 4.031)
- 6. (a) $\langle 1.732, 0.137 \rangle$
- (b) y-3=0.414(x-5)

(c) 3.750

(d) (2.239, 1.664)

- 7. (a) 1.269
- (b)
- (c) 3.368