Review for Slope Fields Test

Match the slope fields with their differential equations.

(A)

(B)

(C)

(D)

 $1. \frac{dy}{dx} = \sin x$

2.
$$\frac{dy}{dx} = x - y$$
 3. $\frac{dy}{dx} = 2 - y$ 4. $\frac{dy}{dx} = x$

3.
$$\frac{dy}{dx} = 2 - y$$

4.
$$\frac{dy}{dx} = x$$

Match the slope fields with their differential equations.

(A)

(B)

(C)

(D)

5.
$$\frac{dy}{dx} = .5x - 1$$

6.
$$\frac{dy}{dx} = .5y$$

7.
$$\frac{dy}{dx} = -\frac{x}{1}$$

5.
$$\frac{dy}{dx} = .5x - 1$$
 6. $\frac{dy}{dx} = .5y$ 7. $\frac{dy}{dx} = -\frac{x}{y}$ 8. $\frac{dy}{dx} = x + y$

- **9.** Consider the differential equation given by $\frac{dy}{dx} = \frac{xy^2}{4}$.
- (a) On the axes provided, sketch a slope field for the given differential equation.

- (b) Let f be the function that satisfies the given differential equation. Write an equation for the tangent line to the curve y = f(x) through the point (1, 1). Then use your tangent line equation to estimate the value of f(1.2)
- (c) Find the particular solution y = f(x) to the differential equation with the initial condition f(1)=1. Use your solution to find f(1.2).
- (d) Describe all points in the xy plane for which the slopes are positive.
- (e) Use Euler's Method to with initial condition (1,1) and step size h=.2 to approximate y(1.6).
- 10. Consider the differential equation given by $\frac{dy}{dx} = x^3(y+3)$. Let y = f(x) be the particular solution to this differential equation with initial condition f(2) = 1.
- (a) On the axes provided, sketch a slope field for the given differential equation.

- (b) Write an equation for the tangent line at x = 2.
- (c) Find the particular solution y = f(x) to the differential equation with the initial condition f(2) = 1.
- (d) Describe all points in the xy plane for which the slopes are negative.
- (e) Use Euler's method with the given step sizes to estimate the value of y(2.4) for this differential equation.
 - i. h=.1
 - ii. h=.2